BACKGROUND AND SIGNIFICANCE

AHRQ continues to report that hospital-acquired pressure injuries (HAPI) are on the rise nationwide while all other hospital-acquired conditions have decreased.1 The unreimbursed treatment cost of each HAPI is estimated at $21,784 and the treatment cost of ICU-acquired HAPI is even higher at over $32,000.2 In addition, patients with HAPIs are 2 to 5 times more likely to experience a fall, a urinary tract infection, pneumonia and ventilator-acquired pneumonia.3 The high cost and increased risk for other HAC make HAPI prevention a priority.

Regular patient turning has been shown to have a strong correlation to reduction in HAPIs.4

METHODS

The system provides visual cues in red, yellow and green to indicate which patients are due for a turn. The system was implemented in the ICU, 3 East & West, and 4 East & West. Patient wearable sensor system was implemented in the ICU, 3 East & West.

The system provides visual cues in red, yellow and green to indicate which patients are due for a turn. In addition to on-time turning, the system also monitors turn angle for adequate turning and tissue recovery time between turns.

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

RESULTS

In the first 12 months, 918 patients qualified for the sensor (Braden Scale ≤16) and were monitored. 112,998 patient care hours. Most common reasons for delayed repositioning were procedures and patient/family refusal.

Regular patient turning has been shown to have a strong correlation to reduction in HAPIs.4

The system provides visual cues in red, yellow and green to indicate which patients are due for a turn. In addition to on-time turning, the system also monitors turn angle for adequate turning and tissue recovery time between turns.

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

RESULTS

In the first 12 months, 918 patients qualified for the sensor (Braden Scale ≤16) and were monitored. 112,998 patient care hours. Most common reasons for delayed repositioning were procedures and patient/family refusal.

Regular patient turning has been shown to have a strong correlation to reduction in HAPIs.4

The system provides visual cues in red, yellow and green to indicate which patients are due for a turn. In addition to on-time turning, the system also monitors turn angle for adequate turning and tissue recovery time between turns.

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

RESULTS

In the first 12 months, 918 patients qualified for the sensor (Braden Scale ≤16) and were monitored. 112,998 patient care hours. Most common reasons for delayed repositioning were procedures and patient/family refusal.

Regular patient turning has been shown to have a strong correlation to reduction in HAPIs.4

The system provides visual cues in red, yellow and green to indicate which patients are due for a turn. In addition to on-time turning, the system also monitors turn angle for adequate turning and tissue recovery time between turns.

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

RESULTS

In the first 12 months, 918 patients qualified for the sensor (Braden Scale ≤16) and were monitored. 112,998 patient care hours. Most common reasons for delayed repositioning were procedures and patient/family refusal.

Regular patient turning has been shown to have a strong correlation to reduction in HAPIs.4

The system provides visual cues in red, yellow and green to indicate which patients are due for a turn. In addition to on-time turning, the system also monitors turn angle for adequate turning and tissue recovery time between turns.

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

RESULTS

In the first 12 months, 918 patients qualified for the sensor (Braden Scale ≤16) and were monitored. 112,998 patient care hours. Most common reasons for delayed repositioning were procedures and patient/family refusal.

Regular patient turning has been shown to have a strong correlation to reduction in HAPIs.4

The system provides visual cues in red, yellow and green to indicate which patients are due for a turn. In addition to on-time turning, the system also monitors turn angle for adequate turning and tissue recovery time between turns.

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

RESULTS

In the first 12 months, 918 patients qualified for the sensor (Braden Scale ≤16) and were monitored. 112,998 patient care hours. Most common reasons for delayed repositioning were procedures and patient/family refusal.

Regular patient turning has been shown to have a strong correlation to reduction in HAPIs.4

The system provides visual cues in red, yellow and green to indicate which patients are due for a turn. In addition to on-time turning, the system also monitors turn angle for adequate turning and tissue recovery time between turns.

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

RESULTS

In the first 12 months, 918 patients qualified for the sensor (Braden Scale ≤16) and were monitored. 112,998 patient care hours. Most common reasons for delayed repositioning were procedures and patient/family refusal.

Regular patient turning has been shown to have a strong correlation to reduction in HAPIs.4

The system provides visual cues in red, yellow and green to indicate which patients are due for a turn. In addition to on-time turning, the system also monitors turn angle for adequate turning and tissue recovery time between turns.

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

RESULTS

In the first 12 months, 918 patients qualified for the sensor (Braden Scale ≤16) and were monitored. 112,998 patient care hours. Most common reasons for delayed repositioning were procedures and patient/family refusal.

Regular patient turning has been shown to have a strong correlation to reduction in HAPIs.4

The system provides visual cues in red, yellow and green to indicate which patients are due for a turn. In addition to on-time turning, the system also monitors turn angle for adequate turning and tissue recovery time between turns.

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

RESULTS

In the first 12 months, 918 patients qualified for the sensor (Braden Scale ≤16) and were monitored. 112,998 patient care hours. Most common reasons for delayed repositioning were procedures and patient/family refusal.

Regular patient turning has been shown to have a strong correlation to reduction in HAPIs.4

The system provides visual cues in red, yellow and green to indicate which patients are due for a turn. In addition to on-time turning, the system also monitors turn angle for adequate turning and tissue recovery time between turns.

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

RESULTS

In the first 12 months, 918 patients qualified for the sensor (Braden Scale ≤16) and were monitored. 112,998 patient care hours. Most common reasons for delayed repositioning were procedures and patient/family refusal.

Regular patient turning has been shown to have a strong correlation to reduction in HAPIs.4

The system provides visual cues in red, yellow and green to indicate which patients are due for a turn. In addition to on-time turning, the system also monitors turn angle for adequate turning and tissue recovery time between turns.

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

RESULTS

In the first 12 months, 918 patients qualified for the sensor (Braden Scale ≤16) and were monitored. 112,998 patient care hours. Most common reasons for delayed repositioning were procedures and patient/family refusal.

Regular patient turning has been shown to have a strong correlation to reduction in HAPIs.4

The system provides visual cues in red, yellow and green to indicate which patients are due for a turn. In addition to on-time turning, the system also monitors turn angle for adequate turning and tissue recovery time between turns.

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

RESULTS

In the first 12 months, 918 patients qualified for the sensor (Braden Scale ≤16) and were monitored. 112,998 patient care hours. Most common reasons for delayed repositioning were procedures and patient/family refusal.

Regular patient turning has been shown to have a strong correlation to reduction in HAPIs.4

The system provides visual cues in red, yellow and green to indicate which patients are due for a turn. In addition to on-time turning, the system also monitors turn angle for adequate turning and tissue recovery time between turns.

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.

METHODS

Patient wearable sensor system was implemented in the ICU, 3 East & West and 4 East & West.